The axiom of choice for countable collections of countable sets does not imply the countable union theorem.
نویسندگان
چکیده
منابع مشابه
Countable Sets and Hessenberg’s Theorem
The papers [20], [16], [3], [11], [9], [15], [5], [8], [7], [21], [19], [2], [1], [10], [22], [12], [13], [18], [14], [17], [4], and [6] provide the terminology and notation for this paper. For simplicity we follow the rules: X, Y are sets, D is a non-empty set, m, n, n1, n2, n3, m2, m1 are natural numbers, A, B are ordinal numbers, L, K, M , N are cardinal numbers, x is arbitrary, and f is a f...
متن کاملThe Contrapositive of Countable Choice for Inhabited Sets of Naturals
Within a fairly weak formal theory of numbers and number-theoretic sequences we give a direct proof of the contrapositive of countable finite choice for decidable predicates. Our proof is at the same time a proof of a stronger form of it. In that way we think that we improve a proof given by Diener and Schuster. Within the same theory we prove properties of inhabited sets of naturals satisfying...
متن کاملDense non-reflection for stationary collections of countable sets
We present several forcing posets for adding a non-reflecting stationary subset of Pω1 (λ), where λ ≥ ω2. We prove that PFA is consistent with dense non-reflection in Pω1 (λ), which means that every stationary subset of Pω1 (λ) contains a stationary subset which does not reflect to any set of size א1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 (λ) follows from ...
متن کاملCountable Choice and Compactness
We work in set-theory without choice ZF. Denoting by AC(N) the countable axiom of choice, we show in ZF+AC(N) that the closed unit ball of a uniformly convex Banach space is compact in the convex topology (an alternative to the weak topology in ZF). We prove that this ball is (closely) convex-compact in the convex topology. Given a set I, a real number p ≥ 1 (resp. p = 0), and some closed subse...
متن کاملOn the countable generator theorem
Let T be a finite entropy, aperiodic automorphism of a nonatomic probability space. We give an elementary proof of the existence of a finite entropy, countable generating partition for T . In this short article we give a simple proof of Rokhlin’s countable generator theorem [Ro], originating from considerations in [Se] which use standard techniques in ergodic theory. We hope that these consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Notre Dame Journal of Formal Logic
سال: 1992
ISSN: 0029-4527
DOI: 10.1305/ndjfl/1093636102